Ψάρεμα φοροφυγάδων σε «λίμνη δεδομένων» από την ΑΑΔΕ!

Το Μέλλον της Εργασίας στην Εποχή της Τεχνητής Νοημοσύνης

Υπό στενή παρακολούθηση θέτει σύντομα η ΑΑΔΕ όλους τους φορολογούμενους, φυσικά πρόσωπα και επιχειρήσεις, με την ενεργοποίηση του Συστήματος Προηγμένης Επιχειρησιακής Νοημοσύνης (BI) και ανάλυσης δεδομένων (Data Analytics).

Πρόκειται για ένα σύστημα τεχνητής νοημοσύνης και μηχανικής μάθησης το οποίο θα περιλαμβάνει τεχνικές με τις οποίες θα γίνεται επεξεργασία δεδομένων και εξαγωγή πληροφορίας από μεγάλα σύνολα δεδομένων με σκοπό να γίνουν προβλέψεις για τη μελλοντική συμπεριφορά των φορολογουμένων.

Για να λειτουργήσει θα δημιουργηθεί μια τεράστια «λίμνη δεδομένων» (Data Lake) στην οποία θα εισρέουν στοιχεία των φορολογουμένων, από τράπεζες, ΕΦΚΑ, ΓΕΜΗ, και άλλους δημόσιους και ιδιωτικούς φορείς, τα οποία θα διασταυρώνονται και με τη βοήθεια της τεχνητής νοημοσύνης θα εντοπίζονται φοροφυγάδες.

Το σύστημα μέσα από τη συγκέντρωση, εξόρυξη και ανάλυση δεδομένων και τη στατιστική και ποσοτική ανάλυση θα δημιουργεί το προφίλ των φορολογουμένων και αναλόγως θα κατευθύνει τους ελεγκτικούς μηχανισμούς.

Παρακολούθηση των πάντων

Τα βασικά χαρακτηριστικά που θα περιλαμβάνει το νέο σύστημα ανάλυσης και εξόρυξης δεδομένων της ΑΑΔΕ είναι τα ακόλουθα:

  1. Η διασύνδεση με τα πληροφοριακά συστήματα του ελέγχου: Παροχή δεδομένων για την υλοποίηση έμμεσων τεχνικών ελέγχων και ελεγκτικών διασταυρωτικών επαληθεύσεων
  2. Η ανάλυση δεδομένων για σκοπούς στόχευσης ελέγχων: Άντληση και ανάλυση δεδομένων της ΑΑΔΕ σε συνδυασμό με δεδομένα από εξωτερικές πηγές (παγκόσμιο ιστός, κοινωνικά δίκτυα, ανοιχτά δεδομένα κλπ.) για την αποδοτικότερη επικαιροποίηση ανάλυσης κινδύνων στη στόχευση και προτεραιοποίηση των ελέγχων, σε συμφωνία και προς επίτευξη των στόχων του στρατηγικού και επιχειρησιακού σχεδίου της ΑΑΔΕ
  3. Η έγκαιρη ανίχνευση περιστατικών φοροδιαφυγής: Ανίχνευση σε πραγματικό χρόνο ύποπτων περιστατικών φοροδιαφυγής και λαθρεμπορίου
  4. Η ανακάλυψη δυναμικών σχέσεων μεταξύ των φορολογουμένων: Όπως έχει αποδειχτεί από εφαρμογές άλλων ευρωπαϊκών χωρών είναι πολύ σημαντικό βήμα για την εύρεση απάτης και φοροδιαφυγής
  5. Η κατηγοριοποίηση φορολογουμένων: Κατηγοριοποίηση της αναμενόμενης συμπεριφοράς φορολογουμένων πχ στρατηγικός κακοπληρωτής, πιθανότητα φοροδιαφυγής κλπ.
  6. Το profiling φορολογουμένων: Εύρεση μη εμφανών ομοιοτήτων μεταξύ των φορολογουμένων όπως προκύπτουν μετά από δημογραφική, οικονομική και συμπεριφορική ανάλυση του συνόλου του πληθυσμού των φορολογουμένων. Χρησιμοποιείται στην εκτίμηση κινδύνου και σε άλλες περιπτώσεις χρήσης
  7. Η εκτίμηση ρίσκου και αξιολόγηση κινδύνου: Αξιολόγηση των φορολογουμένων ως προς το ρίσκο μη πληρωμής.
  8. Η πρόβλεψη εσόδων και οφειλών: Πρόβλεψη εσόδων και οφειλών συνολικά και ανά φορολογούμενο ή ανά ΔΟΥ, ανά γεωγραφική περιοχή, ανά επάγγελμα, ή οποιαδήποτε άλλη διάσταση βάση των ιστορικών στοιχείων συμπεριφοράς των φορολογουμένων.
  9. Η ευελιξία στη διασυνδεσιμότητα καθώς θα έχει πρόσβαση σε όλα τα δεδομένα (δομημένα, ημιδομημένα, αδόμητα) της ΑΑΔΕ καθώς και εξωτερικών πηγών με στόχο την προ- επεξεργασία, την ενοποίηση, τον μετασχηματισμό και την αξιοποίηση τους.
  10. Η δυνατότητα παραγωγής στατιστικών και διαδραστικών αναφορών επιχειρησιακής ευφυΐας για το σύνολο των δεδομένων και πληροφοριών στους επιχειρησιακούς χρήστες.
  11. Η επεξεργασία των δεδομένων σε πραγματικό χρόνο προκειμένου να επιτευχθεί η παραγωγή αναφορών σε πραγματικό χρόνο, η λήψη απόφασης και δράσης βάσει αυτών και η άμεση ενημέρωση των εφαρμογών.

sofokleousin

Οι απόψεις που εκφράζονται στα σχόλια των άρθρων δεν απηχούν κατ’ ανάγκη τις απόψεις της ιστοσελίδας μας, το οποίο ως εκ τούτου δεν φέρει καμία ευθύνη. Για τα άρθρα που αναδημοσιεύονται εδώ με πηγή, ουδεμία ευθύνη εκ του νόμου φέρουμε καθώς απηχούν αποκλειστικά τις απόψεις των συντακτών τους και δεν δεσμεύουν καθ’ οιονδήποτε τρόπο την ιστοσελίδα.‌‌

Ροή Ειδήσεων